JEE Main Conic Section Important Questions

Dipanjana Sengupta

Updated On: November 17, 2025 12:29 PM

In this article, candidates can find the JEE Main Conic Section Important Questions along with previous years' question papers PDF.
JEE Main Conic Section Important Questions

JEE Main Conic Section Important Questions - A Conic Section is a curve developed by a plane after the intersection of the surface of the cone. A Conic Section can be divided into four basic sections: Parabola, Hyperbola, Ellipse, and Circle. As the JEE Main Conic Section is one of the most important sections in the Mathematics Paper, students are often inquisitive about the tentative questions that can be asked in the JEE Main 2026 . Therefore, we have mentioned the important questions from previous years' question papers.

JEE Main Conic Section Important Questions

1: The equation of 2p2 + 3t2 − 8p − 18t + 35 = k represents a ________.

Answer -

Given equation, 2p2 + 3t2 − 8p − 18t + 35 – k = 0

Compare with ap2 + bt2 + 2hpy + 2gp + 2ty + c = 0

We get,

a = 2, b = 3, h = 0, g = −4, f = −9, c = 35 − k

Δ = abc + 2fgh − af2 − bg2 − ch2 = 6 (35 − k) + 0 − 162 − 48 − 0

Δ = 210 − 6k − 210 = −6k

Δ = 0, if k = 0

So, that given equation is a point if k = 0.


2: The locus of the midpoint of the line segment joining the focus to a moving point on the parabola p2 = 4cx is another parabola with the directrix ___________.

Answer -

Let the midpoint be (u, k) and the moving point be (ct2, 2ct).

Let focus is (c, 0).

So h = [ct2 + c] /2, k = [2ct + 0] / 2

=> t = k/c

So 2h = c(k/c)2 + c

= (k2/c) + c

=> k2 = 2ch – c2

=> k2 = 2c(h – c/2)

Replace (u, k) by (x, p)

p2 = 2c(x – c/2)

Directrix is (x − c/2)  = -c/2

=> x = 0

So x = 0 is the directrix.


3: On the parabola a = b2, the point least distance from the straight line a = 2b − 4 is ___________.

Answer -

Given, parabola b = x2  …..(i)

Straight line a = 2b − 4      …..(ii)

From (i) and (ii),

b2 − 2b + 4 = 0

Let f (b) = b2 − 2b + 4,

f′(b) = 2b − 2.

For least distance, f′(b) =0

⇒ 2b − 2 = 0

b = 1

From a = b2, a = 1

So, the point least distant from the line is (1, 1).


4: The line a − 1 = 0 is the directrix of the parabola, b2 − ka + 8 = 0. Then, one of the values of k is ________.

Answer -

The parabola is b2 = 4 * [k / 4] (a − [8 / k]).

Putting b = B, a − (8/k) = A, the equation is B2 = 4 * [k/4] * A

The directrix  is A + (k/4) = 0,i.e. a − (8/k) + (k/4) = 0.

But a − 1 = 0 is the directrix.

So, [8 / k] − (k / 4) = 1

⇒ k = −8, 4


5:If the foci of the ellipse (x2 / 16 )+ (y2 / b2 )= 1 and the hyperbola (x2 / 144) − (y2 / 81) = 1 / 25 coincide, then the value of b2 is _______.

Answer -

Hyperbola is (x2 / 144) − (y2 / 81) = 1 / 25

a = √(144/25);  b = √(81/25)

e1 = √(1 + b2/a2)

= √(1 + 81/144)

= 15/12

= 5/4

Therefore, foci = (ae1, 0) = ([12 / 5] * [5 / 4], 0) = (3, 0)

Therefore, focus of ellipse = (4e, 0) i.e. (3, 0)

=> e = 3/4

use formula e2 = 1 – (b2/a2)

Hence b2 = 16 (1 − [9 / 16]) = 7


6: Find the equation of the axis of the given hyperbola a2/3 −  b2/2 = 1 which is equally inclined to the axes.

Answer -

a2/3 −  y2/2 = 1

Equation of tangent is equally inclined to the axis i.e., tan θ = 1 = m.

Equation of tangent b= ma + √(c2m2 – d2)

Given equation is [a2/3] − [b2/2] = 1 is an equation of hyperbola which is of the form [a2/c2] − [b2/d2] = 1.

Now, on comparing c2 = 3, d2 = 2

b = 1 * a + √(3-2)

b = a + 1


7: If 4a2 + pb2 = 45 and a2 − 4b2 = 5 cut orthogonally, then the value of p is ______.

Answer -

Slope of 1st curve (dy / da)I = −4a / pb

Slope of 2nd curve (dy / da)II= a / 4b

For orthogonal intersection (−4a / pb) (a / 4b) = −1

a2 = pb2

On solving equations of given curves a = 3, b = 1

p (1) = (3)2 = 9

p = 9


8: The center of the circle passing through the point (0, 1) and touching the curve b = a2 at (2, 4) is ____________.

Solution:

Tangent to the parabola b = a2 at (2, 4) is [1 / 2] (b + 4) = a * 2 or

4a − b − 4 = 0

It is also a tangent to the circle so that the center lies on the normal through (2, 4) whose equation is a + 4b = λ, where 2 + 16 = λ.

Therefore, a + 4b = 18 is the normal on which lies (h, k).

h + 4k = 18  ….. (i)

Again, the distance of center (h, k) from (2, 4) and (0, 1) on the circle are equal.

Hence, (h − 2)2 + (k − 4)2 = h2 + (k − 1)2

So, 4h + 6k = 19     …..(ii)

Solving (i) and (ii), we get the center = (−16 / 5, 53 / 10)


9: Let E be the ellipse a2 / 9 + b2 / 4 = 1 and C be the circle a2 + b2 = 9. Let P and Q be the points (1, 2) and (2, 1), respectively. Then

A) Q lies inside C but outside E

B) Q lies outside both C and E

C) P lies inside both C and E

D) P lies inside C but outside E

Answer -

The given ellipse is [a2 / 9] + [b2 / 4] = 1. The value of the expression [a2 / 9] + [b2 / 4] – 1 is positive for a = 1, b = 2 and negative for a = 2, b = 1. Therefore, P lies outside E and Q lies inside E. The value of the expression a2 + b2 – 9 is negative for both the points P and Q. Therefore, P and Q both lie inside C. Hence, P lies inside C but outside E.

Hence option d is the answer.


10: The equation of the director circle of the hyperbola [a2 / 16] − [b2 / 4] = 1 is given by ______.

Answer -

The equation of the director circle of the hyperbola is a2 + b2 = c2 − d2.  Here c2 = 16, d2 = 4

Therefore, a2 + b2 = 12 is the required director circle.


Question 11: If m1 and m2 are the slopes of the tangents to the hyperbola a2 / 25 − b2 / 16 = 1 which passes through the point (6, 2), then find the relation between the sum and product of the slopes.

Answer -

The line through (6, 2) is b − 2 = m (a − 6)

y = mx + 2 − 6m

Now from state of tangency, (2 − 6m)2 = 25m2 − 16

36m2 + 4 − 24m − 25m2 + 16 = 0

11m2 − 24m + 20 = 0

Obviously its roots are m1 and m2, therefore m1 + m2 = 24 / 11 and m1m2 = 20 / 11.


12: The eccentricity of the curve represented by the equation a2 + 2b2 − 2a + 3b + 2 = 0 is __________.

Answer -

Equation a2 + 2b2 − 2a + 3b + 2 = 0 can be written as (a − 1)2 / 2 + (b + 3 / 4)2 = 1 / 16

[(a − 1)2] / (1/8) + [(b + 3 / 4)2] / (1/16) = 1,  which is an ellipse with c2 = 1 / 8 and d2 = 1 / 16

e = √(1 – d2/c2)

e2 = 1 − 1 / 2

e = 1 / √2


13: The foci of the ellipse 25 (a + 1)2 + 9 (b + 2)2 = 225 are at ___________.

Answer -

[25(a + 1)2/225] + [9(b + 2)2/225] = 1

Here, c = √[225 / 25] = 15 / 5 = 3

d = √[225/9] = 15 / 3 = 5

Major axis of the ellipse lies along the y-axis.

d2 = c2(1 – e2)

e = √[1 − 9 / 25] = 4 / 5

Focus = (−1, −2 ± [15 / 3] * [4 / 5])

= (−1, −2 ± 4)

= (-1, 2); (-1, -6)


14: The locus of a variable point whose distance from (2, 0) is 2/3 times its distance from the line a = −9 / 2, is __________.

Solution:

Let point P be (a1, b1) and Q(2, 0).

Given line => a = -9/2

=> 2a + 9 = 0

Let PM be the distance from P to line 2a + 9 = 0.

So, PQ = (2/3)PM

= (2/3)(a1 + 9/2)

(a1 + 2)2 + b21 = 4/9 (a1 + 9 / 2)2

9 [a12 + b21+ 4a1 + 4] = 4(a12 + (81 / 4) + 9a1)

5a12 + 9b21 = 45

(a12 / 9) + (b21 / 5 ) = 1,

Locus of (a1, y1) is (a2/9) + (b2/5) = 1, which is the equation of an ellipse.


15: The equation of the ellipse whose latus rectum is 8 and whose eccentricity is 1 / √2, referred to the principal axes of coordinates, is __________.

Solution:

Equation of ellipse = (a2/c2) + (b2/d2) = 1

Latus rectum = 2d2/c = 8

=> d2 = 4c ..(i)

Given e = 1/√2

We know e2 = 1 – (d2/c2)

1/2 = 1 – 4/c

Solving we get c = 8.

So d2 = 4c = 32

So d2 = 64, c2 = 32

Hence, the required equation of the ellipse is (a2/64) + (b2/32) = 1.


JEE Main Mathematics Question Paper

Click Here Click Here
Click Here Click Here
Click Here Click Here

Also check:

JEE Main Marks vs Percentile JEE Main 2026 Marks vs Rank
JEE Main: Know all about NAT Questions What is the difference between JEE Main & JEE Advanced?
JEE Main Preparation for Guaranteed Success What is a Good Score and Rank in JEE Main 2026?
JEE Main 2026 study plan and timetable for 60 days JEE Main 2026 Mathematics subject-wise weightage
How to prepare Maths for JEE Main 2026? JEE Main Mathematics Important Topics

For more information and updates on JEE Main Conic Section Important Questions, stay tuned with CollegeDekho.

Are you feeling lost and unsure about what career path to take after completing 12th standard?

Say goodbye to confusion and hello to a bright future!

news_cta

FAQs

Do engineers use conic sections?

Yes, engineers use conic sections. The smoothness of conic sections is a critical property for applications such as aerodynamics, where a smooth surface is required to provide laminar flow and control turbulence.

What is the formula for conic section in JEE mains?

The conics equation described by the second-degree equation can be written as ax2+2hxy+by2+2gx+2fy+c = 0. Here, ∆ = abc + 2fgh – af2 – bg2 – ch2. ∆ is the discriminant.

Is conic sections hard?

Conic Sections is an easy and scoring chapter. Candidates preparing for the JEE Main Conic Section solved questions are advised to practice and be thorough with the formulas as this section is entirely based on formula-based problems.

How important is conic sections in JEE?

Around 5 to 7 heavy weightage questions are asked on the Conic Section topic in the JEE Main Exam, every year. 

/articles/jee-main-conic-section-important-questions/

Next Story

View All Questions

Related Questions

Career in Nutrition : Sir I want to do nutrition and diet s course from lpu is there any job and Campus and future in nutrition and diets course

-AdminUpdated on November 17, 2025 12:48 PM
  • 47 Answers
vridhi, Student / Alumni

A career in Nutrition & Dietetics from LPU offers excellent job prospects and a bright future! LPU's program is specifically designed to meet industry demands, with hands-on training and a focus on practical skills. You'll gain the knowledge and expertise needed to work in hospitals, clinics, and the food industry. The campus provides a vibrant learning environment with modern labs and opportunities for professional development.

READ MORE...

Percentage of placement in MBA in 2019 at LPU Phagwara?

-AnonymousUpdated on November 17, 2025 12:49 PM
  • 68 Answers
vridhi, Student / Alumni

LPU phagwara had around 90% placement in MBA .Many big companies came like Amazon, HDFC and Deloitte. Students got good packages and roles. LPU gives training, soft skills classes, and internships which help a lot. The environment is also very supportive for MBA students to grow and get placed well.

READ MORE...

how the MBA placements for year 2022

-saurabh jainUpdated on November 17, 2025 12:48 PM
  • 22 Answers
vridhi, Student / Alumni

LPU's placement is always promising and the graph goes high each session. From 2022-2025, various reputed recruiters like Amazon, HDFC etc visits the campus. Also LPU makes sure the students are placement ready by dedicating special placement cell.

READ MORE...

Do you have a question? Ask us.

  • Typical response between 24-48 hours

  • Get personalized response

  • Free of Cost

  • Access to community

Recent Articles

Recent News

Subscribe to CollegeDekho News

By proceeding ahead you expressly agree to the CollegeDekho terms of use and privacy policy

Top 10 Engineering Colleges in India

View All